
Last Revision: 12 Oct 2012

RS232IO
Controller

Manual

 Compiled by: Grant Phillips
 Riaan Ehlers

1. Overview

The RS232IO Controller is a device that allows a computer to interface to electronic
circuits/devices using a standard RS232 port. It has the following features:

• 1 x 8-bit output port
• 1 x 8-bit input port
• 1 x 8-bit input/output port with PWM and SERVO alternate functions
• 5 x Analog input channels
• 2 x PWM output channels
• 4 x Servo Motor output channels

2. Architecture

The RS232IO Controller architecture can is summarized in the following block diagram:

R
S

23
2I

O
 C

on
tr

ol
le

r

P0.0

P0.1

P0.3

P0.2

P0.4

P0.5

P0.6

P0.7

P
O

R
T

 0

(8
 x

 In
pu

ts
)

P1.0

P1.1

P1.3

P1.2

P1.4

P1.5

P1.6

P1.7

P
O

R
T

 1

(8
 x

 O
ut

pu
ts

)

P2.0 / PWM1

P2.1 / PWM0

P2.3 / SERVO1

P2.2 / SERVO0

P2.4 / SERVO2

P2.5 / SERVO3

P2.6

P2.7

P
O

R
T

 2

(8
 x

 In
pu

ts
 /

O
ut

pu
ts

)

PC

Ext. +5V supply

RS-232

Port0
Normal 8-bit input port. The inputs are labeled P0.0 (LSB) to P0.7 (MSB). 0V = LOW and
+5V is HIGH.

Port1
Normal 8-bit output port. The outputs are labeled P1.0 (LSB) to P1.7 (MSB). The outputs
can only provide a 0 (0V) or a 1 (+5V). Each output can source a maximum current of 25mA.

Port2
An 8-bit input/output port. The IO pins are labeled P2.0 (LSB) to P2.7 (MSB). The PWM and
SERVO outputs are multiplexed with the P2.0 to P2.5 pins. This means that the “mode” for
each pin can be set individually to:

0 = the pin is an output
1 = the pin is an input
2 = the pin takes on the alternate function and is ignored

as an input or output pin. E.g. if the mode for P2.0 is
set to 2, then it become the PWM1 output and cannot
be used as a input or output pin.

The outputs can only provide a 0 (0V) or a 1 (+5V) and each output can also source a
maximum current of 25mA.

Analog Channels 0 to 4
An analog channel to indicate the voltage level on its input. The voltage level is indicated as
a 10-bit value. If the input value is 0, it indicates that the input voltage is 0V. If the input value
is 1023, it means that the input voltage is +5V. This means that for every 1 that the input
value changes, it indicates a +/- 5mV change on the input pin.

PWM Outputs 0 & 1
A PWM (Pulse Width Modulation) output is used to provide an analog output. E.g. a PWM
output could be connected to a light and by changing the PWM duty cycle, the brightness of
the light could be varied. When using a PWM output, the user must set the duty cycle which
is represented as a 10-bit value of 0 – 1020 (0% - 100%). The operation is explained in the
following diagram.

PWM Period

Duty Cycle (50%)

Output Voltage:

 2.5 V

Duty Cycle (100%)

 5.0 V

Duty Cycle (0%)

 0.0 V

 3.75 V

Duty Cycle (75%)

The frequency values for the PWM modules are fixed at 33.3Khz due to hardware limitations.

SERVO Outputs 0 to 3

A servo output is used to control the position of a servo motor. Generally a servo needs a
constant frequency input signal of 50Hz (20ms) and then the position of the servo is
determined by the duration of the HIGH pulse. When the pulse is 1.5ms, then the servo will
be more or less at the midpoint. Generally servo motors can turn through 90˚, which means
that a 1ms and a 2ms pulse will move it to the furthest positions. Sometimes these servos
can be pushed beyond these theoretical limits and sending it a pulse of less than 1ms or
more than 2ms will turn it further than just the 90˚. PLEASE TAKE CARE WHEN TESTING
THIS AND TRY TO INCREMENT THE PULSE IN SMALL STEPS TO “TEST” WHERE THE
LIMIT IS FOR YOUR PARTICULAR SERVO. It is always safe to start with a 1.5ms pulse
which will move it to its mid-position.

3. Hardware

3.1 Component List

The following components are used for the RS232IO Controller:

Qty Component Schematic Ref

 1 2-pin PCB mount screw terminal J1

 1 DB9 Female Right/Angle PCB mount connector J2

 1 DB9 Female Plug + Cover *1

1 DB9 Male Plug + Cover *1

1 +/- 1m multicore cable for RS232 comms *1

1 3mm/5mm LED D1

 1 1N6267 D2 *2

1 1N4007 D3 *3

1 330R 1/4W resistor R1

 1 10K 1/4W resistor R2

 2 220R 1/4W resistor R3, R4

 1 470uF Electrolytic Capacitor 16V C1

 5 10uF Electrolytic Capacitor 16V C5 - C9

 2 33pF Ceramic Capacitors C10, C11

 3 100nF Ceramic Capacitors C2, C3

 1 8Mhz Crystal X1 *4

1 RS232IO Controller (PIC18F4620) U1 *5

1 MAX232 U2

 1 DIP40 IC Holder (for RS232IO Controller)

 1 DIP16 IC Holder (for MAX232)

 *1 These are required to make up the RS-232 cable to communicate between the PC and the RS232IO
Controller

*2 Optional - only to prevent overvoltage in the event of a incorrect power supply
*3 Optional - only to prevent reverse polarity when power is connected the wrong way around
*4 Must be EXACTLY 8Mhz
*5 You can get this from Mr Ehlers and he will program it with the latest Firmware version

3.2 PCB

See the “RS232IO Controller PCB.pdf” document which contains the actual size of the PCB
which can be taken to any PCB manufacturer. The drill sizes for the holes are +/- 1mm, so it
is probably best to ask the manufacturers to drill it for you too.

3.3 PCB Layout

The components are arranged as follows on the PCB (seen from the top):

Make sure to place the Diodes the correct way around and take special care when placing the
capacitors to have the + sides the correct way around too.

Note that connectors J3 and J4 provide the connections to your external circuits. Also note
that PIN 1 for J3 is AT THE TOP, where PIN 1 for J4 is AT THE BOTTOM.

3.4 PCB Layout

The connections for J3 and J4 are as follows:

J3

J4

 +5V out 1 2 +5V out

P0.7 40 39 P0.7

ANALOG0 3 4 ANALOG0

P0.6 38 37 P0.6

ANALOG1 5 6 ANALOG1

P0.5 36 35 P0.5

ANALOG2 7 8 ANALOG2

P0.4 34 33 P0.4

ANALOG3 9 10 ANALOG3

P0.3 32 31 P0.3

N/A 11 12 N/A

P0.2 30 29 P0.2

ANALOG4 13 14 ANALOG4

P0.1 28 27 P0.1

P2.5 / SERVO3 15 16 P2.5 / SERVO3

P0.0 26 25 P0.0

P2.6 17 18 P2.6

 +5V out 24 23 +5V out

P2.7 19 20 P2.7

Gnd 22 21 Gnd

+5V out 21 22 +5V out

P1.7 20 19 P1.7

+5V out 23 24 +5V out

P1.6 18 17 P1.6

Gnd 25 26 Gnd

P1.5 16 15 P1.5

Gnd 27 28 Gnd

P1.4 14 13 P1.4

N/A 29 30 N/A

 +5V out 12 11 +5V out

P2.0 / PWM1 31 32 P2.0 / PWM1

Gnd 10 9 Gnd

P2.1 / PWM0 33 34 P2.1 / PWM0

P2.4 / SERVO2 8 7 P2.4 / SERVO2

P2.2 / SERVO0 35 36 P2.2 / SERVO0

P2.3 / SERVO1 6 5 P2.3 / SERVO1

P1.0 37 38 P1.0

P1.3 4 3 P1.3

P1.1 39 40 P1.1

P1.2 2 1 P1.2

The +5V out pins can supply your external circuits with +5V from the supply that is connected
to the RS232IO Controller – do not connect a +5V supply from another source to these pins!
If you have external circuits with different power supplies, try to connect one of the Gnd pins
to those power supplies’ GND pins, i.e. all the GND lines for the supplies must be common.

3.5 RS-232 Cable

The serial cable between the PC and the RS232IO Controller should be wired as follows:

2

3

5

2

3

5

1

5

6

9

1
5

6

9

4. RS232IO.dll

The RS232IO Control is a DLL (Dynamic Linked Library) that is used in Visual Basic to give a
user access to the RS232IO Controller. The user will then use this control to write to outputs,
read inputs, read analogs, and write PWM and SERVO values to the ports of the RS232IO
controller.

4.1 Installing the DLL and integrate it into Visual Basic

To install the RS232IO.dll and use it in Visual Basic, do the following steps:

1. Create a "c:\RS232IO" folder.

2. Copy the contents of the "RS232IODLL.zip" file to the "c:\RS232IO" folder.

3. In the General area of the Toolbox (at the bottom of the list), right-click

4. Select "Choose Items" (this may take a while to bring up the next window)

5. Click "Browse"

6. Go to the "c:\RS232IO" folder and select "RS232IO.dll"

7. Click "Open"

8. Select the RS232IO control under General in the Toolbox and add to the form like you
would normally add other controls.

4.2 Using the RS232IO control in Visual Basic

The following section summarizes the methods that can be used with the control.

General methods:

1. StartIOConnection(ComPortNumber, P2_7_mode, P2_6_mode,

P2_5_mode, P2_4_mode, P2_3_mode, P2_2_mode, P2_1_mode,
P2_0_mode,)
Start communication with the RS232IO Controller on a specific COM port and sets the
mode for the individual port pins on Port 2.

Parameters: ComPortNumber - 0 to 20 (usually 1)
 P2_7_mode - 0 = pin is an output
 1 = pin is an input

 P2_6_mode - 0 = pin is an output
 1 = pin is an input
 P2_5_mode - 0 = pin is an output
 1 = pin is an input

2 = pin is used for SERVO3
 P2_4_mode - 0 = pin is an output
 1 = pin is an input

2 = pin is used for SERVO2
 P2_3_mode - 0 = pin is an output
 1 = pin is an input

2 = pin is used for SERVO1
 P2_2_mode - 0 = pin is an output
 1 = pin is an input

2 = pin is used for SERVO0
 P2_1_mode - 0 = pin is an output
 1 = pin is an input

2 = pin is used for PWM0
 P2_0_mode - 0 = pin is an output
 1 = pin is an input

2 = pin is used for PWM1

2. GetVersion()
Reads the current Firmware version from the RS232 IO Controller.

Returns: A string value (e.g. “v.2.0.1”)

IOPort methods:

1. WriteByteIOPort(PortNumber, Value)

Writes a byte (8-bit) value to an output port. The pins on Port 2 that are configured as
inputs or as their alternate functions, will be ignored when writing the byte to this port.

Parameters: PortNumber - 1 (for Port 1) or 2 (for Port 2)
 Value - byte value (0 – 255)

2. WriteBitIOPort(PortNumber, Bit, Value)
Writes to a specific bit on an output port. The pins on Port 2 that are configured as
inputs or as their alternate functions, will be ignored when writing to that bit.

Parameters: PortNumber - 1 (for Port 1) or 2 (for Port 2)
 Bit - 0 (LSB) to 7 (MSB)
 Value - 0 (LOW) or 1 (HIGH)

3. ToggleBitIOPort(PortNumber, Bit)
Toggles a specific output bit between HIGH and LOW on an output port. The pins on
Port 2 that are configured as inputs or as their alternate functions, will be ignored when
toggling that bit.

Parameters: PortNumber - 1 (for Port 1) or 2 (for Port 2)
 Bit - 0 (LSB) to 7 (MSB)

4. ReadByteIOPort(PortNumber)
Reads a byte (8-bit) value from an input port. The pins on Port 2 that are configured as
outputs or as their alternate functions, will be ignored when reading from this port.

Parameters: PortNumber - 0 (for Port 0) or 2 (for Port 2)

Returns: A byte value (0 – 255)

5. ReadBitIOPort(PortNumber, Bit)
Reads the status (HIGH or LOW) of a specific bit on an input port. The pins on Port 2
that are configured as outputs or as their alternate functions, will be ignored when
reading from that bit.

Parameters: PortNumber - 0 (for Port 0) or 2 (for Port 2)
 Bit - 0 (LSB) to 7 (MSB)

Returns: 0 (LOW) or 1 (HIGH)

Analog Input methods:

1. ReadAnalogChannel(Channel)

Reads an integer value (10-bit) from an Analog input channel.

Parameters: Channel - 0 to 4

Returns: integer value (0 to 1023) – represents a voltage of 0V to 5V

PWM methods:

1. PWM0_SetDutyCycleAsPercentage(DutyCyclePercentage)

Sets the duty cycle for the PWM0 module as a percentage value.

Parameters: DutyCyclePercentage - 0 (0%) to 100 (100%)

2. PWM0_SetDutyCycleAs10bitValue(DutyCycle10bitValue)
Sets the duty cycle for the PWM0 module as a 10-bit value to produce a more accurate
pulse.

Parameters: DutyCycle10bitValue - 0 (0%) to 1020 (100%)

3. PWM1_SetDutyCycleAsPercentage (DutyCyclePercentage)
Sets the duty cycle for the PWM1 module as a percentage value.

Parameters: DutyCyclePercentage - 0 (0%) to 100 (100%)

4. PWM1_SetDutyCycleAs10bitValue(DutyCycle10bitValue)
Sets the duty cycle for the PWM1 module as a 10-bit value to produce a more accurate
pulse.

Parameters: DutyCycle10bitValue - 0 (0%) to 1020 (100%)

5. PWM0_Start()
Starts (enables) the PWM0 output pulse.

6. PWM1_Start()
Stops (disables) the PWM0 output pulse.

7. PWM0_Stop()
Starts (enables) the PWM1 output pulse.

8. PWM1_Stop()
Stops (disables) the PWM1 output pulse.

SERVO methods:

1. SERVO0_SetPulse(PulseWidthInMicroseconds)

Sets the HIGH pulse duration for the SERVO0 output. The parameter represents a
microsecond delay value.

Parameters: PulseWidthInMicroseconds - 200 to 2800

2. SERVO1_SetPulse(PulseWidthInMicroseconds)
Sets the HIGH pulse duration for the SERVO1 output. The parameter represents a
microsecond delay value.

Parameters: PulseWidthInMicroseconds - 200 to 2800

3. SERVO2_SetPulse(PulseWidthInMicroseconds)
Sets the HIGH pulse duration for the SERVO2 output. The parameter represents a
microsecond delay value.

Parameters: PulseWidthInMicroseconds - 200 to 2800

4. SERVO3_SetPulse(PulseWidthInMicroseconds)
Sets the HIGH pulse duration for the SERVO3 output. The parameter represents a
microsecond delay value.

Parameters: PulseWidthInMicroseconds - 200 to 2800

5. SERVO0_Start()
Starts (enables) the SERVO0 output pulse.

6. SERVO1_Start()
Starts (enables) the SERVO1 output pulse.

7. SERVO2_Start()
Starts (enables) the SERVO2 output pulse.

8. SERVO3_Start()
Starts (enables) the SERVO3 output pulse.

9. SERVO0_Stop()
Stops (disables) the SERVO0 output pulse.

10. SERVO1_Stop()
Stops (disables) the SERVO1 output pulse.

11. SERVO2_Stop()
Stops (disables) the SERVO2 output pulse.

12. SERVO3_Stop()
Stops (disables) the SERVO3 output pulse.

